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Solution of  the Klein-Gordon Equation for a Periodic Lattice 
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A solution of the Klein-Gordon equation is obtained for a periodic lattice and from this a solution 
for a beam of electrons traversing a single set of crystal planes is derived. For the singly periodic case, 
the dispersion equation is found to have two branches but in addition to the energy gap at the Brillouin 
zone boundary there appears a gap in the momentum states at the centre of the zone. The relativistic 
extinction distances are also derived. 

Introduction 

The Klein-Gordon equation is the relativistic wave 
equation. It was derived independently by a number of 
workers, including Schr~Sdinger, in 1926 by applying 
Schr~dinger's rules to the relativistic Hamiltonian. 
(Gordon, 1926; Klein, 1926.) A more fundamental 
derivation is given in the Appendix. The equation may 
be written 

1 32~b ¢ 47~2V '2 
V2g - c2 Ot z - c2 9, (1) 

where 9' represents any physical property or system 
whatsoever which is to be described in different 
reference frames, v '2 is a parameter defined for the 
frame in which V'29,=0. If ~ is a particle wave func- 
tion then hv '=e '=res t  energy, h being Planck's con- 
stant. Thesignificance of the Klein-Gordon equation 
is that it selects, from all possible continuous functions 
of the coordinates, those functions which are con- 
sistent with the postulates of the theory of relativity, 
that is, physically acceptable functions. ~ is not 
restricted to probability amplitudes but can represent 
any physical property whatsoever. It is well known, 
for instance, that all electromagnetic quantities must 
satisfy an equation of this kind. 

If we assume solutions of the form 

9, = ~,(r) exp (2~zivt) 

then equation (1) can be written in the forms 
4~z 2 

V2~ + ~ (v 2 -  v'2)~,=O (2) 

o r  
4zc 2 

V2g + ~ (ez -e ' z )~=O (3) 

where e is the total energy, and e 2-p2c2=~'2 p being 
the momentum. Equation (3) reduces to SchriSdinger's 
equation when the kinetic energy is small compared 
with the rest energy. For a particle of rest mass too, 
e '=  moc 2 and the total energy e differs from this by only 
a relatively small amount so that we can put e+e ' ~  - 
2m0 c2. In the notation of classical physics the dif- 
ference between the total and the rest energy is written 
e - e ' =  E -  V where E is the classical total energy and 

V is the potential energy. Hence, 

e 2 -- e '2 ~-- 2moc2(E--  V )  

and this substituted into equation (3) yields Schr6- 
dinger's time independent equation. 

1. Solution for a periodic lattice 

A solution of the Schr~Sdinger equation for a periodic 
lattice was first given by Bethe (1928). The same 
method can be used for the Klein-Gordon equation in 
the form equation (2). The parameter v 'z is periodic 
with the periodicity of the lattice and can be expanded 
in a Fourier series 

v'2(r)= ~ v2,(g) exp [2ni(gm-g,) . r] (4) 
m 

where gm and g, are vectors of the reciprocal lattice 
and r is a vector in the ordinary space. As a trial solu- 
tion put 

g ( r )=  ~ ~u,,,(k) exp [2z~i(k +gin). r] (5) 
m 

where k is an arbitrary wave vector. The solution (5) is 
a Bloch wave function and may be written in the form 

N(r) = u(r) exp (2zcik. r) 

where u(r) is periodic with the lattice periodicity. If 
equations (4) and (5) are substituted into equation (2) 
and coefficients of like exponential terms are equated 
we obtain 

{v2--c2(k-kgm)E}g/m= ~ V2nNn . (6)  
n 

This represents a set of simultaneous equations with 
one equation for each value of m. There will be a non- 
trivial solution only if 

-Vm,,l=0. (7) ]t~mn{l)Z__c2(k nt_ gin)z} z 

Equation (7) determines the permitted values for v 2 and 
these, substituted into the equations (6), then determine 
the amplitudes 9'm. 

2. Singly periodic lattice 

For this case we consider wave vectors g,,, and g_m = 
--gin only and wave amplitudes 9'm and 9'-m. Equa- 
tions (5) then reduce to 
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{ v 2 -  V2m m - c e ( k  q-gm)2}y/m v 2 , = m, - m ~ l - m  ( 8 )  

.f112 - -  112 - -  C2(  k - -  g i n )  2 } ~ - - m  2 = 11--m, rn~Crn 1. - m ,  - m  

and the secular equation [equation (7)] becomes 

112--112 m - - C 2 ( k q - g m )  2} {V 2 I) 2 c 2 ( k - g m }  m, - -  - m ,  - m - -  

= ( 1 ) 2 n , - - r a )  (1)2m, m) .  ( 9 )  

The factor z Vm, m can be interpreted as the fraction of 
g/m which is scattered into itself and 2 V_m, - m as the 
fraction of ~,_~ scattered into itself. As there is no 
means of distinguishing left from right in the lattice 
these two terms must be equal and both can be put 
equal to v0 z, say. The factor VZm,-m is the fraction of 
g/-m scattered into ~'m and conversely for vZ_m. m. The 
product of these two factors reproduces the original 
direction and, for the case of elastic scattering pro- 
cesses, the twice scattered wave must be in phase with 
the original wave. The individual factors may include 
phase changes but the product must be real and can be 
replaced by the modulus IVZm, _~1 z. Equation (9) then 
becomes 

V z= V 2-k- c2(k 2 +g2m) _+ {4c4(k:.:gm) 2 d-[V2m, _m[2} 1/2, (10) 

3. The extinction distances 

In equation (10) let k = O  and denote the solutions for 
the positive branch by v % and for the negative branch 
by v2_. Then 

v~ - v ~_ 
IvZm, - m l -  2 

In the general case when k ¢ 0, let v2 z and v~ refer to the 
positive and negative branches respectively. Then 

v ~ - v ~ = 2 { 4 c 4 ( k ,  gm)Z+lvZm,_ml2}I/2. (11) 

Divide both sides of equation (11) by 2kc 2 and put 
1 v2 2 - v 2 1 v 2 - v 2_ 2k .  gm 

m • __ , 
2kc ' ~o 2kc2 , s -  k " 

We then obtain 
1 ( 1 ~1/2 

= ,s  2 + -~oz/ . (12) 

In electron-diffraction theory ~ is known as the extinc- 
tion distance; ~o is the extinction distance when 
k .  gm= 0, that is to say, when Bragg's law is satisfied. 
The parameter s measures the departure from Bragg's 
law. 

Although equation (12) is of the standard form the 
extinction distances as defined here differ somewhat 
from the usual form. In order to bring out the signi- 
ficance of the extinction distance let us consider the 
basic wave function which is formed by superimposing 
the four waves corresponding to frequencies v~ and v2, 
each frequency being associated with wave vectors 
k +gm and k-gm- For our purpose we can assume the 
waves to have equal amplitudes; this simplifies the 
algebra without loss of generality as far as the extinc- 
tion length is concerned. Summing the four waves we 
obtain a wave function of the form 

4 cos 7~(vl-vz)t cos (2ZCgm. r) 
x exp [2~zi{(vi + v2)t-- 2k .  r}]. 

The phase velocity is u = ( v l  + v2)/2k and corresponds 
to a group velocity v=c2/u .  Hence we can write the 
first factor in the above expression 

\ v l  q -  v 2 / 

] _-cos 
In electron diffraction, the electron beam in the crystal 
can be resolved into groups of four waves. Two of 
these with wave vector k-gin,  say, (frequencies vl and 
v2) can be regarded as combining to form the incident 
wave whilst the remaining pair with wave vector 
k +gm make up the reflected wave. If unit amplitude is 
assigned to the incident wave at the entry surface (zero 
amplitude being assigned to the reflected wave at the 
same surface) then the amplitude of the total wave 
varies with the penetration, r, into the crystal as 
cos  (~rl~). 

From equation (8), the ratio of the wave amplitudes 
is given by 

~'- m V2 -- V0 z -- c2(k + gm) 2 
N 

~//m 112 m, - -m 

In electron-diffraction theory the parameter s is usually 
taken to be normal to gin. In practice, however, the 
angle of incidence of the beam on the crystal planes is 
very small and departures from Bragg's law are also 
small so the difference from the case here (where s is the 
projection of gm onto k) is relatively unimportant.  

Finally, we can approximate for kinetic energies 
which are small compared with the rest energy in 
order to obtain a value for the extinction distance ~o. 

The procedure is the same as that followed in the 
introduction in obtaining Schr~Sdinger's equation. 
Again we can put h(v+  v ' ) ' 2 m c  2, where m is the rest 
mass of the electron. However, now we must put the 
difference of the total and rest energies h ( v - v ' )  equal 
to the classical value for the crystal potential energy, 
i.e. 2e V o, where e is the charge on the electron and V o 
is the classical potential associated with the crystal 
Fourier component of wave vector gin. Thus 

h2(v2+ - v 2_ ) ,~ 4mc2e Vo 
and h z K cos 0 

~ ° ~  2me V o 

where K cos 0 = k and 0 is the Bragg angle. 

4. The dispersion curve 

Let k o be the component of k in the direction of gm. 
The equation of the dispersion curve will then be taken 
to be 

v2 Vo2+ 2 2 ~ , 2 2  v ~ _ m l 2 } , / 2  = c (gm+kg)+ {4c kog,,,+ 1 m. (13) 

with v z plotted against ko z. (It is important to under- 
stand that in the relativistic Hamiltonian it is the square 
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of the energy which is proportional to the square of 
the momentum and that the classical form, E=pZ/2m,  
is an approximation which is valid only for low kinetic 
energies.) When 2_ ko -O ,  the wave system reduces to a 
standing wave combination so that this point corre- 
sponds to the usual Brillouin zone boundary. The 
separation of the upper and lower branches at this 
point is then 2Iv 2,_ml. The maximum of the upper 
branch and the minimum of the lower one occur when 

d(v 2) _ c2 2c4gZm 
d(k 2) + .... 4 2~2-- 2 - -  2 t/2 - 0 ,  (14) 

- {4c kag m+ IVm,-m] } 
that is when 

z z Iv ,2 . . - , . I  ' 
ka _ g,n 4c4g 2 (15) 

and the separation of the branches is then 4 d g  2. 
The result (15) shows that there is a region of for- 

bidden values of k 2 around the Brillouin zone centre 
(ko=g,,,). The explanation of this lies in the fact that 
the differential of v 2 with respect to k 2 in the Hamil- 
tonian gives the square of the velocity of light and 
values of k 2 exceeding that given by equation (15) 
correspond to an imaginary component of the velocity 
of light in the direction gin. The group velocity is 
given by 

dv koc 2 gmc z 1 
- - - -  + 2 " 2 4 2 2  1 / 2  dk  o v - v {1 + lVm. -ml /4C kogm} 

and this also becomes zero when equation (15) is 
satisfied. 

The equation for the dispersion curve is of the form 
of the pseudopotential developed by Harrison provided 
v 2 -  v g is replaced by 2mc2E/h 2, where E is the energy 
in the classical approximation (Harrison, 1966). 

A P P E N D I X  
Derivation of  the Klein-Gordon equation 

The d'Alembertian is invariant under a Lorentz trans- 
formation. 

1 c3 z 1 c3 z 
~7 2 . . . . .  . 

c 2 0 t  z =V'2 c 2 0 t ' 2  

We can always construct a frame of reference so that 
V'Z=O and since in this frame the invariant is 

1 0 2 
c z cgt 'z 

this must be the value of the invariant in all frames. 
If V represents one and the same physical property 

which is measured by two different observers, or, what 
is the same thing, is described in two different reference 
frames as v(r, t) or ~,(r', t '), then 

1 8 2 ~ , _  1 cgz V 
VzV c 2 c~t 2 c z cgt'z • V'2V=0.  

The original Klein-Gordon equation was considered 
suspect for many years because it predicted negative 
energy states and the suspicion seems to have continued 

even after the problem was cleared up by Pauli & 
Weisskopf (1934). Basically, the equation is simpler 
than the SchrGdinger equation if only because it is of  
the standard form for a wave equation. Part of the 
reluctance to use this equation seems to spring from a 
belief that Dirac's equations are necessary to describe 
the relativistic electron. This is mistaken. If 9' for 
instance, is replaced by the electric intensity E the 
above equation is the standard wave equation of the 
electromagnetic field and this can be resolved into the 
first-order Maxwell equations. In a similar way the 
Klein-Gordon equation can be resolved into Dirac's 
equations; each of the four components of ~, must 
then satisfy the general wave equation. The Klein- 
Gordon equation cannot provide information about 
spin (although it is incorrect to say that it can only 
describe particles of zero spin), for this it is necessary 
to go to the first-order equations. 

To obtain equation (1) solutions of the form 9,= 
~u0 exp (2rciv't') are assumed. Fundamentally, 1/v' is 
the defined unit of time in the primed reference frame 
but this unit can take different forms in different 
problems. In single particle theory, hv'= mc 2 is the rest 
or potential energy whilst in problems of the electro- 
magnetic field 2z~v' may be the plasma frequency. 

where Q is the charge density and e0 is the permittivity 
of free space. 

In general v' is related to potential but although rela- 
tivistic expressions can be approximated to classical 
ones in appropriate circumstances, the actual forms 
are quite different. For example the Coulomb energy 
of an electron at distance r from a proton is 

mc 2 e z 

E , = - ~ ;  2rCeo mc2re2 )t/z~_mc2--4rCe--or 

where the approximation is for r>>e2/mc 2. It will be 
noted that the relativistic energy goes to zero with r 
whereas the classical value goes to infinity. It is not 
justified in general to use classical coulomb energies in 
solutions of the wave equation. 

The author wishes to thank Dr W. A. Wooster of  
Crystal Structures Ltd. and Mr W. James of the 
Physics Department, University of Aston, for much 
helpful discussion and criticism. He would also like 
to thank Dr C. J. Humphreys, Department of Metal- 
lurgy, University of Oxford, for some useful comments. 

References 

BETHE, H. A. (1928). Ann. Phys. 87, 55. 
GORDON, W. (1926). Z. Phys. 40, 117. 
HARRtSON, W. A. (1966). Pseudopotentials in the Theory of  

Metals. New York: Benjamin. 
KLEIN, O. (1926). Z. Phys. 37, 895. 
PAULI, W. & WEISSKOPF, W. (1934). Helv. Phys. Aeta, 7,709. 


